报告了一种用于连续和大规模合成 Ni-Co PBA 纳米粒子的微混合策略。本研究中提出的技术允许将粒径控制在 165 nm 至 350 nm 范围内,同时保持高比表面积 (250 m 2 g −1) 和立方结构。此外,由于在沉淀过程中在微通道中发生剧烈碰撞,与使用传统搅拌混合方法制备的颗粒相比,这些颗粒表现出优异的分散性和更均匀的粒径。
2022-12-13
使用设计的流动光反应系统,CHCl3 到 COCl2 的氧化光化学转化在气相中有效发生。 半间歇和连续流动反应系统促进了用于合成氯甲酸酯和碳酸酯(包括聚碳酸酯)的克级光气化反应。 利用这种无需化学试剂、催化剂或溶剂即可在短时间内几乎定量进行的光化学反应,我们成功地展示了无溶剂的连续流动反应,包括 CHCl3 光转化为 COCl2 和碱催化的光气化反应与 N- 甲基咪唑或吡啶,其盐酸盐变成离子液体。
2022-12-07
自主材料发现的未来在很大程度上取决于利用材料科学和化学方面的深厚科学知识。微流控连续合成是一种发现和扩大新材料(如有机分子、聚合物和纳米材料)的新方法。虽然研究人员一直在开发合成锂离子电池和纳米材料组件的方法,但与传统的批处理方法相比,该技术还为大规模纳米材料生产提供了巨大的好处:优异的均质性,通过计算机控制系统实现完全自动化的能力,在困难条件下运行过程的能力,以及可扩展的架构,使研究人员能够从工作台无缝转移到生产。
2022-09-23
将工作流转移到微流控化学合成设备的内在优势在成本、效率和准确性方面可能是惊人的。小型化带来了显着减少试剂使用的明显优势,并且在实验终点的下游,最大限度地减少浪费、溢出和清理问题,使实验室工作更整洁、更可持续。
2022-09-23
连续流动反应器使化学反应能够在屏蔽管和管内发生。这种合成过程被认为克服了常用间歇反应器的一些限制。已经报道了许多通过连续流动工艺合成小分子的成功例子;然而,它们在生物偶联反应中的应用,例如抗体-药物偶联物 (ADC) 合成,在科学文献中极为有限。据我们所知,我们在此报告了同行评审文献中的第一个连续流动过程介导的 ADC 合成。讨论了优化的混合器类型、反应时间和混合器直径。根据这些结果,产生了具有临床相关药物-抗体比率的 ADC。所有流动反应步骤均使用按比例缩小的制造方法进行,该方法利用逐步混合系统执行顺序还原/共轭过程。此外,已建立的连续流动方法可应用于三种不同抗体和三种不同有效载荷的组合,并且对于九种尝试的 ADC 合成中的每一种都观察到相同的趋势。这些结果表明,连续流动化学可用于开发可靠且稳健的 ADC 生产工艺。
2022-09-05
提出了一种连续流动工艺,该工艺能够在光化学条件下安全地生成和衍生苯。 新的大功率 LED 灯发出 365 nm 的光,这有助于实现这一目标。 由此产生的流动过程基于可调节背压调节器有效控制气态副产品的释放,并在 3 分钟的短停留时间内提供一系列杂环产品。 该方法的稳健性在benzotriazoles, 2H-indazoles 和各种呋喃衍生加合物的快速生成中得到证明,通过简单且易于扩展的流动协议促进这些重要的杂环支架的制备。
2022-09-05
提出了一种按需生产 [1.1.1] 丙烷的连续流动过程,提供了 [1.1.1] 丙烷的解决方案,该解决方案可以直接衍生成各种双环 [1.1.1] 戊烷 (BCP) 物质。这是在高达 8.5 mmol h -1的通量中实现的,提供了对克量的选定 BCP 构建块的有吸引力且直接的访问。最后,开发了将 [1.1.1] 丙烷连续光化学转化为具有混合酯/酰氯部分的有价值的 BCP。
2022-09-05