使用微反应技术制备三氯氧磷.可以实现三氯化磷和氧气的瞬间混合和高效的传质传热.并将反应温度、压力精确控制在所需要的范围内。从而使得反应速率大幅提高。由于两种物料可以在微通道内进行快速充分的完全接触。因此三氯化磷的转化效率得到大幅度提高。与传统工艺相比.微反应合成三氯氧磷反应时间短(传统工艺需要40 h以上),并且可以连续化生产。因而效率更高。微反应合成的物料采用常规精馏的方法分离三氯化磷和三氯氧磷.三氯化磷返回到原料中继续进行合成反应。
2021-06-10
微反应器中能够轻松实现稳定和理想的量子点制备环境。 根据微通道反应器中液体的流动方式,微反应器可分为连续层流微反应器、分段流微反应器和液滴微反应器三种类型。
2021-06-09
秋兰姆类促进剂的传统合成步数多,反应慢,并通常使用强酸、强碱、过氧化氢、金属氧化物等化学当量试剂,放热量大,废料处理成本高。新方法只需一步,使用氧气作为绿色廉价的氧化剂,且不使用任何额外的酸或碱
2021-06-07
微反应器为合成所需的纳米粒子的尺寸,形状,形态和组成提供了连续,高效和安全的解决方案。微反应器的不同结构主要根据微通道中反应混合物的流动模式进行分类。微通道中的分段流或多相流显示出比单相流更有效的结果。层状单相连续流微反应器显示出较宽的尺寸分布,而多相分段流微反应器显示出较窄的纳米颗粒尺寸分布。微反应器可在微通道中提供受控的反应环境,由于该原因,也可以成功地合成显示核-壳组成的纳米复合材料。
2021-05-27
连续化反应器在传热传质方面明显优于间歇式反应器,而且自动控制精准。目前,工业上生产乙醛酸的主要方法主要有硝酸氧化乙二醛法,草酸电解还原法以及臭氧氧化马来酸酐法。
2021-05-10
作者探讨了基于有机锂的C-糖基化连续流合成瑞德西韦的工艺,通过仔细分析反应混合物和添加顺序,可以避免在微反应器内形成固体。又通过对反应参数的优化,包括硅基保护基和有机金属试剂的筛选,使得转化中副产物的含量降至最低。通过精确调整工艺参数,再加上微反应器中赋予的优异的传热和传质能力,可在仅8 s的总停留时间内进行高度放热的C-糖基化反应。与釜式反应所需的−78°C相比,连续工艺在−30°C的更高的过程温度下,该反应得以成功实现,这将节省大量能源。
2021-04-07