通过酸催化促进N-Boc-2-azetines水合制备 β-氨基羰基的方法。使用20多种不同功能化的2-azetines(包括生物相关手性支架)探索了反应范围,以优异的产率收集了所需的产物。 此外,还开发了一种废物最小化且节省时间的连续流动工艺,可以通过在线液液分离回收环保有机溶剂(CPME)和可重复使用的酸性水相。
2023-10-09
描述了 CPL304110(一种创新的泛 FGFR 抑制剂)的批量合成。 在这里,我们将合成步骤之一的克莱森缩合反应转移到连续流反应器中。 将溶剂从乙醇简单转换为四氢呋喃,将原来的反应时间从 20 小时缩短到 10 分钟。
2023-10-08
以NB为原料的三步连续合成对乙酰氨基酚的工艺。 添加0.1当量。 加氢体系中的DMAP可以在班伯格重排中被硫酸中和,班伯格重排和酰化反应均与酸体系相容。 在此过程中,生成的AHA可以进入下游及时转化,从而实现AHA的原位按需制备,避免了繁琐的加工和存储过程。
2023-09-19
研究人员已经开发出一种在连续流动条件下 2-氮杂环丁烷的抗马尔可夫尼科夫氢烷基/芳基硫醇化(anti-Markovnikov hydroalkyl/aryl thiolation)和二硫化的策略。 硫基自由基由硫醇或二硫化物产生,随后传播到氮杂环丁烷不饱和度中,形成 C-S 键并形成二级自由基中间体。 这个以碳为中心的自由基链通过氢原子转移(HAT)或另一个二硫化物转移到另一个硫醇上,以重新生成关键的硫基自由基中间体。 流动技术的使用确保了反应混合物的有效照射,从而实现极快、稳健且可扩展的方案。 此外,采用乙酸乙酯作为对环境负责的溶剂。
2023-09-18
用于多种有机反应的光气和 Vilsmeier 试剂 (VR) 在空气中不稳定。 光气还具有极高的毒性。 它们的安全使用,特别是在工业中,是流动有机合成中的一个重要问题。 本研究报告了用氯仿(CHCl3)的流动光化学氧化产生的光气(COCl2)流动合成酰氯和VR。 该系统适用于酯类、羧酸酐类、酰胺类、芳醛前体、β-氯丙烯醛前体的连续流合成。 流动反应系统中的密闭空间有利于安全有效地将CHCl3转化为COCl2和DMF转化为VR,以及随后的羧酸氯化、芳香族化合物的甲酰化以及乙酰基与VR的氯化和甲酰化。
2023-09-18
研究人员已经开发出一种稳健的连续流动工艺,用于多种伯醇和仲醇的选择性氧化。 该过程使用催化量的TEMPO以及 NaBr/NaOCl 作为简单且经济高效的氧化剂系统。 在整个研究中,对停留时间、反应器类型和温度等关键参数进行了评估,以获得有效的反应条件,从而在较短的停留时间内以高化学产率生产各种醛和酮。 一项探索性研究还展示了将基于流动的氧化与连续萃取分离相结合的可行性,方法是将环丁酮转化为其亚硫酸氢盐加合物,从而允许与剩余起始材料和其他产品进行相分离。 此外,通过使用相同的流程设置进行多克规模的反应来试验工艺的适用性和可扩展性。 这样可以连续氧化50克苯丙氨酸(Phenprobamate),并放大三氟甲基化恶唑结构单元和 HIV 药物马拉维若(maraviroc)的前体。
2023-09-13
利用连续流技术的优势,通过未充分利用的Baldwin重排,开发了一种连续流合成氮丙啶(aziridines)的方法,在5-10分钟的停留时间内,得到了比相应的间歇工艺更高的收率、非对映选择性和吞吐量,具有更大的官能团耐受性的氮丙啶(aziridines)库。所选择的溶剂(即MeCN)起着至关重要的作用,因为它允许持续高的非对异选择性,并且能够将反应混合物过热(高于大气沸点约50°C),从而实现更快的反应速率、更高的收率和最小化的产物分解,这是该流动过程的特征。
2023-09-12
通过以1-十四(碳)烯为主要原料,并成功实施微反应微型中试平台,实现了烯烃磺酸盐的连续合成。 值得注意的是,水解后,我们获得了超过 90% 的活性物质含量。
2023-09-07