通过以1-十四(碳)烯为主要原料,并成功实施微反应微型中试平台,实现了烯烃磺酸盐的连续合成。 值得注意的是,水解后,我们获得了超过 90% 的活性物质含量。
2023-09-07
近年来,光催化越来越受到人们的关注,但这绝不是一个新概念。 它在一百多年前就被首次讨论,但在 20 世纪的大部分时间里,它基本上被视为科学新奇事物而被忽视。 然而,20 世纪 70 年代,先驱们响应社会对有效和可持续制氢的关注,为技术注入了新的活力。 此后,它对许多科学领域产生了变革性的影响。 简而言之:光催化涉及在催化剂存在下加速光反应。 光催化材料有效地利用光产生的能量来推动各种化学反应。深入
2023-09-06
反应机制主要通过顺序电子/质子转移而并非氢原子转移HAT, 其关键的反应中间体为三氟乙酸酯。主要反应过程如下:含苄基C(sp3)–H底物在阳极发生氧化去质子化,生成苄基自由基,其进一步氧化生成苄基碳正离子,与三氟乙酸盐反应生成三氟乙酸酯,最终的苄醇产品通过水处理过程中酯的水解获得。
2023-09-06
研究人员开发了高稳定性、高活性的氢气氧化催化剂,极大提高了流动电解池的运行稳定性,并且解决了反应物传质限制的问题。在常温、常压的条件下,通过氮气还原和氢气氧化耦合,实现了连续化的电化学合成氨,最终产氨的法拉第效率高达 61%。
2023-09-05
开发了用于生成六元二芳基碘鎓盐的多步连续流动程序。 这是现有批处理方法在可扩展性和原子经济性方面的重大改进。 该方法在类似Friedel-Crafts烷基化中使用易于获得的乙酸苄酯,而随后的阳极氧化环化直接生成相应的环状碘鎓盐。
2023-09-04
1. 简介流动化学是合成有机化学中的一门学科,它使用不同试剂的连续流,这些试剂通过泵引入并在连续反应器中混合,例如活塞流反应器 (PFR) 或连续搅拌釜反应器 (CSTR)。与通常在圆底烧瓶中进行的传统批量处理相比,它具有多种优势,例如增强传质和传热、提高安全性、提高反应效率、减少浪费、更好的可扩展性和提高的再现性。因此,流动化学可以精确控制反应条件,并能够实时监测和分析反应动力学,从而产生高质量
2023-09-01
研究人员采用碳化法在微通道反应器中连续合成了高比表面积、大孔容的拟薄水铝石。 研究了微通道对所制备的拟薄水铝石的影响,该影响主要体现在气液混合效率上。 在时间尺度上,微通道内拟薄水铝石的结晶度无需经过高温搅拌的老化过程,就达到了工业产品的标准。
2023-09-01